Effect of cholesterol depletion on the pore dilation of TRPV1
نویسندگان
چکیده
The TRPV1 ion channel is expressed in nociceptors, where pharmacological modulation of its function may offer a means of alleviating pain and neurogenic inflammation processes in the human body. The aim of this study was to investigate the effects of cholesterol depletion of the cell on ion-permeability of the TRPV1 ion channel. The ion-permeability properties of TRPV1 were assessed using whole-cell patch-clamp and YO-PRO uptake rate studies on a Chinese hamster ovary (CHO) cell line expressing this ion channel. Prolonged capsaicin-induced activation of TRPV1 with N-methyl-D-glucamine (NMDG) as the sole extracellular cation, generated a biphasic current which included an initial outward current followed by an inward current. Similarly, prolonged proton-activation (pH 5.5) of TRPV1 under hypocalcemic conditions also generated a biphasic current including a fast initial current peak followed by a larger second one. Patch-clamp recordings of reversal potentials of TRPV1 revealed an increase of the ion-permeability for NMDG during prolonged activation of this ion channel under hypocalcemic conditions. Our findings show that cholesterol depletion inhibited both the second current, and the increase in ion-permeability of the TRPV1 channel, resulting from sustained agonist-activation with capsaicin and protons (pH 5.5). These results were confirmed with YO-PRO uptake rate studies using laser scanning confocal microscopy, where cholesterol depletion was found to decrease TRPV1 mediated uptake rates of YO-PRO. Hence, these results propose a novel mechanism by which cellular cholesterol depletion modulates the function of TRPV1, which may constitute a novel approach for treatment of neurogenic pain.
منابع مشابه
Permeation and block of TRPV 1 channels by the cationic lidocaine derivative QX - 314 1 2 3 4
37 QX-314 (N-ethyl-lidocaine) is a cationic lidocaine derivative that blocks voltage38 dependent sodium channels when applied internally to axons or neuronal cell bodies. Co39 application of external QX-314 together with the TRPV1 agonist capsaicin produces 40 long-lasting sodium channel inhibition in TRPV1-expressing neurons, suggestive of QX41 314 entry into the neurons. We asked whether QX-3...
متن کاملPore dilation occurs in TRPA1 but not in TRPM8 channels
Abundantly expressed in pain-sensing neurons, TRPV1, TRPA1 and TRPM8 are major cellular sensors of thermal, chemical and mechanical stimuli. The function of these ion channels has been attributed to their selective permeation of small cations (e.g., Ca2+, Na+ and K+), and the ion selectivity has been assumed to be an invariant fingerprint to a given channel. However, for TRPV1, the notion of in...
متن کاملA Novel Integrated Approach to Modelling of Depletion-Induced Change in Full Permeability Tensor of Naturally Fractured Reservoirs
More than half of all hydrocarbon reservoirs are Naturally Fractured Reservoirs (NFRs), in which production forecasting is a complicated function of fluid flow in a fracture-matrix system. Modelling of fluid flow in NFRs is challenging due to formation heterogeneity and anisotropy. Stress sensitivity and depletion effect on already-complex reservoir permeability add to the sophistication. Horiz...
متن کاملCharacterisation of Weibel–Palade body fusion by amperometry in endothelial cells reveals fusion pore dynamics and the effect of cholesterol on exocytosis
Regulated secretion from endothelial cells is mediated by Weibel-Palade body (WPB) exocytosis. Plasma membrane cholesterol is implicated in regulating secretory granule exocytosis and fusion pore dynamics; however, its role in modulating WPB exocytosis is not clear. To address this we combined high-resolution electrochemical analysis of WPB fusion pore dynamics, by amperometry, with high-speed ...
متن کاملEndocannabinoid System and TRPV1 Receptors in the Dorsal Hippocampus of the Rats Modulate Anxiety-like Behaviors
Objective(s) Fatty acid is amide hydrolase which reduce endogenous anandamide. Transient receptor potential vanilloid-1 (TRPV1) channels have been reported to have a role in the modulation of anxiety-like behaviors in rodents. In the present study, the effects of either endocannabinoid system or TRPV1 channels and their possible interaction on anxiety-like behaviors of the rats were explored. ...
متن کامل